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ABSTRACT

Suppose that A and B are cancellative abelian semigroups and that R is an integral domain.We demonstrate that this
semigroupring R[B] may be reduced to a direct sum of R[A]-submodules of the ring of R[Aquotient] as a R[A]-module. In
the case of a finite extension of positive affine semigroup rings, we provide a method for calculating the decomposition. This
decomposition allows us to calculate different ring-theoretic features of R[B] for polynomial rings over fields, and we
demonstrate how to do so for R[A]. Specifically, we provide a fast method for determining the Castelnuovo-Mumford
regularity of homogeneous semigroup rings.In a number of novel contexts, we find evidence that supports the Eisenbud-
Goto theory. Our algorithms are part of the MACAULAY 2 package MONOMIALALGEBRAS.

1.INTRODUCTION

Let A C B be cancellative abelian semigroups, and let R
be an integral domain. Denote by G(B) the group gener-
ated by B. and by R|B] the semigroup ring associated to
B. that is. the free R-module with basis formed by the
symbols t* for @ € B, and multiplication given by the R-
hilinear extension of t* - t* = {**", Extending a result of
[Hoa and Stiickrad 03]. we show that the semigroup ring
R[B] can be decomposed, as an R]A]-module, into a di-
rect sum of R[A|-submodules of R[G(A)] indexed by the
elements of the factor group G(B)/G(A).

By a positive affine semigroup we mean a finitely
generated subsemigroup B C N™, for some m. If AC
BT N™ are positive affine semigroups, K is a field,
and the positive rational cones ('(A) C ('(B) spanned
by A and B are equal, then K[B] is a finitely gener-
ated K[A]-module. and we can make the decomposi-
tion above effective. In this case. the number of sub-
modules [, in the decomposition is finite, and we can
choose them to be ideals of K[A]. We give an algo-
rithm for computing the decomposition, implemented
in our MACAULAY2 |Grayson and Stillman 10] package
MONOMIALALGEBRAS [Bohm et al. 12].

By a simplicial semigroup. we mean a positive affine
semigroup B such that C'(B) is a simplicial cone. If B is

simplicial and A is a subsemigroup generated by elements
on the extremal rays of B, many ring-theoretic proper-
ties of KB such as being Gorenstein, Cohen-Macaulay,
Buchsbaum, normal. or seminormal can be characterized
in terms of the decomposition: see Proposition 3.1. Us-
ing this, we can provide functions to test those properties
efficiently.

Recall that every positive affine semigroup B has a
unique minimal generating set Hilb(B) called its Hilbert
basis. By a homogeneous semigroup we mean a positive
affine semigroup that admits an N-grading in which all
the elements of Hilb(B) have degree 1.

One motivation for developing the decompesition algo-
rithm was to have a more efficient algorithm to compute
the Castelnuovo-Mumford regularity (see Section 4 for
the definition) of a homogeneous semigronp ring K'[B)|.
This invariant is often computed from a minimal graded
free resolution of K[B] as a module over a polynomial
ring in n variables. where n is the cardinality of Hilb(B).
The free resolution conld have length n — 1. and if n is
large (say n > 15). this computation becomes very time-
consuming. But in fact, the Castelnmovo-Mumford regu-
larity of K[B] can be computed from a minimal graded
free resolntion of K[B] as a module over any polynomial
ring, so long as K[B] is finitely generated.
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submodules I, € R|G(A)| indexed by elements g € G :=
G(B)/G(A).

Proof. We think of an element g € & as a subset of G(B).
For g € G. let

r,:={beB|be g}

By construction, we have

RB =D, Rt

For each g € G. choose a representative h, € g € G(B).
The module R-1" is an R[A}-submodule of R[B]. and
as such. it is isomorphic to

I:=R-{t*" | beT}} C RIG(A)].
w}

We note that such a decomposition was considered
in [Bruns and Gubeladze 03] for polynomial rings R{B]
over a field R and certain normal affine subsemigroups
A of B.

With notation as in the proof, we have

R[B| =p)a) @gea I -t

This decomposition, together with the ring structure of
R[A] and the group structure of @, actually determines
the ring structure of R[B}: if z€ I,, and y € I, and
ry = z as elements of R[G(A)|. then as elements in the
decompoasition of R[B].

fh‘l th‘-'
2R Y= P2 € Iy, 494+

Yy =92

Henceforward, we assume that AC B CN™ are pos-
itive affine semigroups, and we work with monomial al-
gebras over a field K.

The set By={reB|xz¢ B+(A\{0})} is the
unique minimal subset of B such that t7* generates
K|[B| as a K[A]-module. We define T', :={be By |be
g} Then Ty + A=T7.

We can compute the decomposition of Theorem 2.1
if K[B] is a finitely generated K[Al-module. or equiva-
lently, if B4 is a finite set. This finiteness (for positive
affine semigroups A C B) is equivalent to the property
C'(A) = C(B), where (X} denotes the positive rational
cone spanned by X in Q™. (Proof: If C(A) S C(B). we
can choose an element r € B on a ray of C'(B) not in
C(A). sonx € By for all n € N7, Thus B, is not finite.
Conversely, if C{A) = C(B). then for all b € B, there ex-
ists iy € N7 such that nyb € A. To generate K[B] as a
K[A]-module, it suffices to take all possible sums of the
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nput: A homogeneons ring homomorphism

of N"-graded polynomial rings over a field K with
degy, = ¢, and degx; = b; such that ¢'(y,) is a monomial
for all ¢ and the gradings specify positive affine semigroups
A={ej.....e) SEB={b.....0,) TN™ with C(A)=
C(B).

Jutput: Anideal J;, € K[A] and a shift hy € G(B) for each
g€ G :=G(8)/G(A) with

KBl=@D, . Li(~h)
as 2" -graded K1A]l-modules (with degt® = b).

1: Compute the set By = {heB|b¢ B+ (A {0})}. and
let {oy,..., vy } be the monomials in K[B] corresponding
to elements of B . For example, this can be done by com-
puting the toric ideal f; = ker ¢ associated to B. where

01 K1, ... ta] = K[B], xi+et%,
and then computing a monomial K-basis v;..... 1, of
Kizy.....xa]/(Ue + ¢((41s--- pa)))

2: Partition the elements v, by their class modulo G(A).
forming the decomposition

BJ — Ugec_l‘".

3: For each g € G, choose a representative g€ Iy,
4: For each v € I'y, choose ¢, ;, € Z such that

d
v=aq+ Co 185
9 E:,_, v.) &)

: Let g, ; :=minf{e, , [v el }.

o
b

d
{"° ‘=-‘7+Z,-. &.jes: Ly = KIAHE"M |nery) me"'}

multiples mb such that m < ny, for all b in a (finite) gen-
erating set for the semigroup B.) Note that if B, is finite,
then G(B)/G(A) is also finite.

From these observations we obtain Algorithm 1. com-
puting the set B4 and the decomposition of K[B].

For v € T',, the element #" " is in K[A], because

d
”— hg = Zj:l (Cl'-J - éﬂ-j)e.f

is an expression with nonnegative integer coefficients.
Thus, [, is a monomial ideal of KA} and h, € G(B)
for each g € 5. as required.

Example 2.2. Consider
B =((2.0.3),(4,0,1).(0.2,3).(1,3.1),(1.2,2)) C N?
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and the subsemigroup

A={(2.0.3).(4.0.1),(0.2,3): (1,3,1)).
We get the decomposition of B, into equivalence classes
By = {0.(2,4.4)} u {(1.2.2), (3,6.6)}-

Choosing shifts k) = (—2.0,—3) and hy = (—1.2, —1) in
G(B). we have

K-iB] ~ K-iA] {t('.’,ﬂ."!]. t(-l,d.'-') }(—hl)
@ K[A]{t(z.ﬁ,li). t( 4.4.7) }(—h'.’)

= (xp, 2123) (— 1) & (w0, 2123)(—ha),
where K[A] = Klzg. 2. x2, 23]/ (@3z] — xix3).

Example 2.3. Using our implementation of Algorithm 1
in the MACAULAY2 package MONOMIALALGEBRAS. we
compnte the decomposition of Q[B] over Q[A] in the
case given in Example 2.2:

11: loadPackage "MonomialAlgebras*;

i2: A = {{2,0,3}.{4,0,1),(0.2,3),{1.,3,1}};:

i3: B = {{2,0,3},(4,0,1}.{0,2,3}).{1,3.1} ,{1,2,2}};

i4: S = QQix0 .. x4, Degrees=>B];

i6: P = QQ{x.0 .. x.3, Degrees=>A};

16: £ = map(S,P);

i7: dc =~ d =p M 1alAlgeb £

o7: HashTable{ {0,0.0} => { ideal ( xu. x: x;

{6,0,0) »> { 3deal ( =x=s. z;z§
iB: ring first first values dc
oB:

T i e

The keys of the hash table represent the elements of 6.

-~
- =

{-2,0,-3} |}
{-1.2,-1) B

Example 2.3. Using our implementation of Algorithm 1
in the MACAULAY2 package MONOMIALALGEBRAS, we
compute the decomposition of Q [B] over  [A4] in the
case given in Example 2.2:

11: loadPackage “MonocaialAlgebraas™;

12: A = |{2,0,3},/4,0,1),(0,2,3),(1,3,2)):

13: B = {{2,0,3}),(4.0,1}, 0.2.3;.{1.3.!‘.(1.2.2”;

£4: & = Q[x.0 .. x4, Degrees>>B];

15: P = QQ{x 0 .. x. 3, Degrees~>4];

$6: ¢t = zap(S,P);

47: dc = decomposeMosomialAigebra £

a7: HashTable{ {0,0.0) => { ideal ( x,, x; xi ). (-2,0.-3} |}

[5,0,0) => { 2deal ( x¢, xixi ). {-1.2.-1] })
318: ring first first values dc¢

The keys of the hash table represent the elements of G

3. RING-THEORETIC PROPERTIES

In this section. we will always consider simplicial semi-
groups. Recall that a positive affine semigroup B
is simplicial if it spans a simplicial cone, or equiv-
alently, if there are linearly independent elements
€r.ene g € B with O(B) = C({ey....,e4}). Many ring-
theoretic  properties of semigroup algebras can be
determined from the combinatories of the sewmi-
group; see [Garcia-Sanchez and Rosales 02, Hochster 72,
Hochster and Roberts 76. Li 04, Stanley 78]. Here we
give characterizations in terms of the decompasition of
Theorem 2.1.

Proposition 3.1. Lel K be a field, B CN" a sionph-
cial sermgroup, and let A be the submonoid of B that
s generated by hnearly independent elements ey, ... ey
of B with C'(A) = C(B). Let By be as above, and let
K[B] = @, 1s(~hy) be the output of Algorithm 1 with
respeet to A C B using ymmal generators of A. We
have:

1. The depth of KIB] is the minirnum of the depths of
the ideals 1, .

2. K|B] s Cohken-Macaulay if and only if every ideal I,
s eqgual to KA

3. K[B] s Gorenstein if and only if K[B] is Cohen—
Macauwlay and the set of shifts {h,},-c has exactly
ene marimal elerment with respect to < given by < y
if there s an element = € B such that o« + = = y.

4. K|[B] ts Buchsbawm if and only if each ideal I, é¢ither is
equal to K{A] or is equal to the homogeneous maxitnal
ideal of K[Al, and h, + b€ B for all b € Hilb(8)_

5. K[B] is normal if and only if for vcvery element © in
Ba, theve exist Ay ... A EQ with D < A\ < 1 for all
i such that == 3 0, ANe,-

6. K[B] is semminormal if and only if for cvery elemnent ©
in By there exist Ay... . da e Q with 0 < A\, < 1 for
all ¢ such that xr = iy A

Proof. For every x € G{B) there are uniguely determined
clements A{..... A7 € Q such that r = Z:j_ y Afe,. Then
by construction.

o
hy=> min{A} |vel,}e;.

J=-1

Assertions 1 and 2 follow immediately: assertion 2 was al-
ready mentioned in [Stanley 78, Theorem 6.4]. Assertion
3 can be found in [Stanley 78, Corollary 6.5].

To prove assertion 4, let [, be a proper ideal, equiva-
lently. #I'; = 2_The ideal 1, is equal to the homogeneons
maximal ideal of K{A] and hy + b € B for all b £ Hilb(B)
fand only if Uy = {m 4 €y, ....m 4 ¢4} for some mn with
m+4 b e B for all b € Hilb( ). Now the assertion follows
from [Garcia-Sanchez and Rosales 02, Theorem 9],

For assertion 5, we set

i
Dy ={I€G(B)|I=z:f\.€.',r\. €qQ

|

and 0 < A, <1w}_

The ring K[B] is normal if and only if B = C(8) N G(B)
by [Hochster 72. Proposition 1. We need to show that
C(B)NG(B)C B if and only if By € D4. We have
By C D4 if and only if D4 € Ba, since By has #G =
##£14 equivalence classes and by definition of B4. Note
that D,y C C(B)NG(B) and D,y N B C B,. The asser-
tion follows from the fact that every element = & C'(B) N
G(B) can be written as = = + Y0, me; for some
e Dy and n, € N

To prove assertion 6. we set

d
Dy := {I€ Bl-"::z/\-‘—’n'\- ceQ and 0 < A,SlVi}.

-1
By [Hochster and Roberts 76. Proposition 5.32] and
[Li 4. Theorem 4.1.1], K[B] is seminormal if and
O!.L‘)' if By C D_|- pmvided that e;.....eq € Hﬂb(B).
Otherwise. there is ke {I,._..d} with e, =& + ¢}
and ej.ef € B\ {0}). We set A" ={er,. ..}, ... ea)
and A" = (... f.-c.eq). Clearly, C(A) = C(A) =
C(A"). We need to show that By € D4 if and ounly if
By C Dy, Let € By\ Dy If v — e, € B. then r g
84 \ DA'. If x — ‘:’k € 8B, then » — l:;.. e By \ DA-. Lot
x € By \ Dy, say x = Z”‘k Aje; + Mpep and A; > 1 for
some 3. If j# Kk, then r& By \ D4, Let 7= k: con-
sider the element y = +ef — 37, ., nje, € B for some
n, € N such that 37 _, n; is maximal It follows that
y € By \ D4, and we are done. (=)
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Note that normality of positive affine semigroup rings
can also be tested using the implementation of normal-
ization in the program NORMALIZ [Bruns et al. 12}, We
remark that from Proposition 3.1, it follows that every
simplicial affine semigroup ring KIB] that is seminor-
mal and Buchsbaum is also Cohen-Macaulay. This holds
more generally for arbitrary positive afline semigroups by
[Bruns et al. 06, Proposition 4.15].

Example 3.2. (Smooth Rational Monomial Curvesin F*.)
Consider the simplicial semigroup

B = {{a.0).{a = 1.1}, (1,a — 1),(0,a)) € N?

and set 4= {{r,0). (0, )}, say K[A] = Kz, y|. Note
that we have a equivalence classes. We get

K[B]= Klz.yP ® (e° 3, ) @ (2 ) 800 @ (2,4")
as Kr.yl-modules, where the shifts are omitted. In the
decompogition, each ideal of the form (', y'). 1 < i j <
o — 3. with i + j = o — 2, appears exactly once. Hence
K[B] is not Buchsbaum for o >4, since (a° % y) is
a direct summand. In case o =4, there is only one
proper ideal I; = (r.y) and hy = (2,2); in fact, (2.2) +
Hilb(8) € B. and therefore K[B] is Buchsbaum. It fol-
lows immediately that K|B]| is Coben-Macanlay for o <
3. Gorenstein for o < 2. seminormal for o < 3. and nor-
mal for v < 3. Note that we could also decompose K|[B]
over the subring KIA], where A = ((20.0).(0.2a)) =
K[z, y']. For a = 4. we would get

Example 3.3. Let

B = {(1,0.0),(0,1,0).(0.0,2),(1.0.1).{0.1.1)) < N*.

Moreover. let A = ((1,0,0), (0. 1,0), (0,0.2)), say K[A4] =
Klz.y.z]. This example was given in [Li 04, Exam-
ple 6.0.2] to study the relation between seminormality
and the Buchsbaum property. We have
KBl = KAl @ (. y)(-(0.0, 1)),

as Fhgraded K[A]-modules. Hence K[B] is not Buchs-
baum, sinee (r.y) is not maximal; moreover, K[B] is
seminormal, but not normal.

Example 3.4. Consider the semigroup
B = {(1.0,0}.(0,2,0).(0,0,2),(1.0.1).{0.1.1)) € N¥,
and set A = ((1,0,0),(0,2.0). (0.0.2)). We get

K[B| = K[A] @ K[A](~(1,0.1)) & K[A}(-(0,1.1))
& K[A)(—(1.1.2)).
Hence K[B]| is Gorenstein, since (1.0,1) 4 (0.1,

1)
(1. 1.2}, Moreover. K[B] is not normal, since (1.0.1)
(1,0.0) + £{0.0.2), but seminormal.

Example 3.5. We illustrate our implementation of the
characterizations given in Proposition 3.1 in the case of
Example 3.4:

il: B = {{1,0,0},{0,2.0}.{0.0.2}.{1.0.1}.{0.1.1}};

i2: isGorensteinMA B

02: true

i3: izNormalMA B

o3: false

i4: izSeminormalMA B

od: true

Note that there are also commands
isCohenMacaulayMA and isBuchsbaumMA available
for testing the Cohen-Macanlay and the Buchsbaum
properties, respectively.
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4. REGULARITY

Let K be a feld and let R = Kxy ... x.] be a standard
graded polynomial ring, that is, degr, =1 for all i =
: SRR n. Let B, be the homogeneous maximal ideal of
R, and let Al be a finitely generated graded R-module.
We define the Castelnuovo-Mum ford reqularity reg M of
M by

reg Al -= max {a(H;,- (M) 4i|i= 0} z

where a(Hp (M)):=max {n | [Hf (M), # 0} and
al0) = —noc: Hp (M) denotes the ith local cohomology
module of Af with respect to i, . Note that reg M can
tain minimal Grébner bases by [Baver and Stilliman 87
Thus, it is of interest to compute or bound the regu-
larity of a homogencons ideal. The following conjecture
(Eisenbud-Goto) was made in [Eisenbud and Goto 843: If
K is algebraically closed and [ is a homogencous prime
ideal of R, then for S = R/1.

reg S < deg S — codim S.

Here deg S denotes the degree of § and codim§ =
dimyg S — dim S the codimension. The conjecture has
been proved for dimension 2 by Grusoen, Lazarsfeld.
and Peskine {see [Gruson et al. 83]): for the Buchsbaum
case by [Stiickrad and Voge!l 88] (see also [Treger 82]
and [Stiickrad and Vogel 87]): for degS < codim § + 2
by Hoa. Stiickrad, and Vogel. see [Hoa et al. 91]; and
in characteristic zero for smooth surfaces and certain
smooth threefolds by [Lazarsfeld 87] and [Ran 90). There
is also a stronger version in which S is only required to
be reduced and connected in codimension 1: this ver-
sion has been proved in dimension 2 by [Giaimo 06].
For homogeneous semigroup rings of codimension 2,
the conjecture was proved by [Peeva and Sturmfels 98].
Even in the simplicial setting, the conjecture is largely
open. though it was proved for the isolated singular-
ity case by [Herzog and Hibi 03], for the seminormal
case by [Nitsche 12]. and for a few other cases by
[Hoa and Stiickrad 03. Nitsche 11].

We now focus on computing the regularity of a ho-
mogeneons semigroup ring K[B]. Note that a posi-
tive affine semigroup B is homogeneous if and only if
there is a group homomorphism deg : G(B) — £ with
degh = 1 for all b € Hilb(B). We always consider the R-
module structure on K[B] given by the homogeneous sur-
jective K-algebra homomorphism R —» KBl x; v th
where Hilb(B) = {1..... ba}. Generalizing the results
from [Hoa and Stiickrad 03], the regularity can be com-
puted in terms of the decomposition of Theorem 2.1 as
follows:

Proposition 4.1. Let K be an arlatrary field. and let B C
N™ e a hormogencous semigroup. Fix a group homoror-
phismdeg : G{B) — £ with deg b = 1 for all b £ Hilb( 8).
Moregver, let A be a subimonowd of B with Hilb(A) =
{e1.-.cceq}. degei = 1 for all ¢, and C{A) = C(B). Let
KB =@, .c 1;{—hy) be the output of Algorithm I uith
respect to A © B, Then:
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Algorithm 2 The regularity algorithm.

Input: The Hilbert basis Hilb(B) of a homogeneous semi-
group 8 C N™ and a field K.
Output: The Castelnuovo Mumford regularity reg K[B].

1: Choose a minimal subset {e1,....ea)} of Hilb{B) with
C({ei....,eq}) =C(B). and set A = (e1.... e4).

2: Compute the decomposition K{B| =B . L,(—h,) over
K]A| by Algorithm 1.

3: Compute a  hyperplane H = {(t;..-.. t.)eR™ |
3, t, = ¢} with ¢ # 0 such that Hilb(B) C H. De-
fine deg : B™ — R by deg{t,..... ty) = (T a;t;) /e
reg K |B] = max{reg!, +degh_ |gc G}

L reg K[B] = max {reg I, + degh, | g € G}. where
reg I, denotes the vequlanty of the ideal 1, © K[A]
with respect to the canonseal Klrg..... x4 -module
slructure.

2. deg K[B} = #G - deg K[A].

Proof. To prove the first assertion. consider the T =
Kln,..., g -module structure on KB, which is given
by T —» K[A] C K[B]. &; v t*:. Since C(A) = C{B). we
get by [Brodmann and Sharp 98, Theorem 13.1.6].

Hi i (K{B]) = Hy (K[B]).

as Z-graded T-modules (where K[B]; is the homoge-
neous maximal ideal of K[B]). By the same theorem. we
obtain Hy ., (K[B])= Hj (K[B]). Then the assertion
follows from K[B] =@, f,(~ degh,) as Z-graded T-
modules,

Assertion 2 follows from deg{, = deg K[A] for all
ge . a

Using Proposition 4.1, we obtain Algorithm 2, by
which the computation of reg K[B] reduces to computing
minimal graded free resolutions of the monomial ideals
1y in K[A] as K[ry, ..., rel-modules.

Example 4.2. We apply Algorithm 2 using the decom-
position computed in Example 2.3. A resolution of 7 =
(xg. 11 23) 85 a T' = Q [¥y. xy, T2, x4}-module is

0—T(-)@T(-5) T (-1)BT(-3) — 1 —0

with
- III‘:_.; 33
—rg —xy2n |’

whence regf =4, The group homomorphisin is given
by degh = (b + by 4 By)/5. and therefore., regQ[B] =
max {4 —1.4-0} =4.

With respect to timings, we frst foens on dimen-
sion 3, comparing our implementation of Algorithm 2
in the Macavray2 package MONOMIALALGEBRAS
(marked in the tables by MA) with other methods:
Here we consider the computation of the regularity via
a minimal graded free resolution both in MAcAvLAY2
(M2) and SinGurar [Decker ot al. 12] (S). Further-
more, we compare onr algorithm with the algorithm
of [Bermejo and Gimenez 06]. This method does not
require the computation of a free resolution, and is
implemented in the SINGULAR package MREGULAR.LIH
[Bermejo et al. 11] (BG-S) and the MACAULAY2 package
Recurarrry  [Seceleanu and Stapleton 10]  (BG-M2).
For comparability we obtain the toric ideal Iy always

Codimension ¢

Algorithm | 1 2 3 1 5 [ 7 s [0
MA 073 089 095 .10 13 14 40 19 16
M2 0084 0089 011 .17 043 10 45 28 21
S 0009 0089 011 013 020 46 I8 LI 68
BG-S 016 L0300 .19 1.2 15 24 549 “ i
BG-M2 036 053 AT L8 9.0 19 E2 39 A3
Codimension ¢

Algorithm | 10 11 12 13 14 15 16 17T 18

MA .21 26 22 26 .29 S0 31 36 A7

M2 180 = = * = * - - *

S R = * = - . - * *

BG-S 170 520 - - - - 360 460 350

BG-M2 85 150 140 250 310 290 300 410 320

TABLE 1. Algorithm timing comparisons for K = Q.d =3, a =5, and n = 15 examples.

Codimension ¢
Algorithm | 1 2 4 4 5 6 7 5 9
MA 072 JO8S 093 10 -12 iy &3 J13 19 16
M2 0075 0095 010 013 020 032 090 40 2.8
S L0N6T 010 011 015 023 041 16 A9 6.3
BG-S AT 020 031 052 .0 12 W18 34 42
BG-M2 30 037 061 14 <) A8 R0 15 20

Codimension ¢

Algorithm | 10 11 12 13 u 15 16 17 I8
MA 21 .25 22 25 29 29 31 .3 .39
M2 26 - B - - - - - -
S 28 250 * - * . = =
BG-S ST 88 88 1.1 14 15 LT 25 24
BG-M2 33 44 44 64 TH TSR 12 13

TABLE 2. Algorithm timing comparisons for § = Z/101. d = 3.a = 5. and n = 15 examples.

through the program 47112 [Hemmecke et al. 03], which
can be called optionally in our implementation (using
{Petrovic et al. 10]). We give the average computation
times over n examples generated by the function
randomSemigroup («,d, c,num=>n,setSeed=>trus).
Starting with the standard random seed, this function
generates n random semigroups B € N9 such that

e dim K[B] =d.

e codim K[B] = c: that is. the number of generators
of Bisd+ c.

e Each generator of B has coordinate sum equal to e

All timings are in seconds on a single 2.7-GHz core
with 4 GB of RAM. In the cases marked by a star. at least
one of the computations ran out of memory or did not
finish within 1200 seconds. Note that the computation of
reg I, in step 4 of Algorithin 2 could easily be parallelized.
This is not available in our MACAULAY2 implementation
s0 far.

Table 1 shows the comparison for K =Q ., d=3. a =
5. and n = 15 examples.

For small codimension c. the decomposition approach
has slightly higher overhead than the traditional algo-
rithms. For larger codimensions. however, both the reso-
lution approach in MACAULAYZ2 and SiNGULAR and the
Beormejo-Gimenez implementation in SINGULAR fail. The

average computation times of the REGuLARITY package
increase significantly, whereas those for Algorithm 2 stay
under one second. The traditional approaches hecome
more competitive when the same setup over the fnite
field K = Z /101 is considered. but are still much slower
than Algorithm 2. See Table 2.

Note that over a finite field, there may not ex-
ist a bhomogeneous linear transformation such that
the initial ideal is of nested type: see. for example.
{Bermejo and Gimenez 06, Remark 4.9]. This case is not
covered and hence does not terminate in the implementa-
tion of the Bermejo-Gimenez algorithin in the REGULAR-
1Ty package. In the standard configuration, the package
MHEGULAR.LIB can handle this case. but then does not
perform well over a finite field in our setup. Hence we use
its alternative option. which takes the same approach as
the REGULARITY package and applies a random homo-
geneous linear transformation.
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Increasing the dimension to J = 4. we compare our
implementation with the most competitive one, that is,
MREGULAR.LIB (K = Z/101. a0 = 5. n = 1). Hore also the
SINGULAR implementation of the Bermejo-Gimenez al-
gorithm fails. See Table 3.

To illustrate the performance of Algorithm 2,

Codimension ¢
Algorithm I L) 8 12 16 20 24 28 32 36 40 44 48 52
MA A3 31 38 13 89 22 1.7 19 15 44 60 89 13
BG-S | 610 22 460 150 380 840 M0 . * . - - .

we

TABLE 3. Algorithm timing comparisons for K = Z/101. d = 41.a = 5. and n = 1 example.

Clodimonsion ¢
Cloordinate Swn o | 1 bl 12 10 ) 4 25 g2 au i ad 5 62
| UR3
1 07 U ™
K " I an 2
6 At M a2 2 v in
T 1a A6 18 2 20 86 10 14
L 1" a2 Wwon an o ny LU B S ]
" M 20 A 38 n {0} w un | B S . B B A N1 1R}

TABLE 4, Compatation thoos of Algorithim MA for K = 2101, d =3, and » o= 1 wxample

Obtaining the regularity via Algorithm 2 involves two
main computations: decomposing K87 into a direct sum
of monomial ideals [, € K[A] via Algorithm 1 and com-
puting a minimal graded free resolution for each f,. The
compnutation time for the first task is increasing with
the codimension. On the other hand. the complexity of
the second task grows with the cardinality of Hilb(A).
which tends to be small for big codimension. This ex-
plains the good performance of the algorithm for large
codimension observed in Table 5. In particular. the sim-
plicial case shows an impressive performance. as illus-
trated in Table 6 for simmplicial semigroups with d = 5 and
a = 5 (same setup as before), The examples are gener-
ated by the function randomSemigroup using the option
simplicial=>true.

In case of a homogeneous semigroup ring of dimen-
sion 2, the ideals J; are monomial ideals in two variables.
Hence we can read off reg [; by ordering the monomials
with respect to the lexicographic order (see. for example,
[Nitsche 11, Propaosition 4.1]). This further improves the
performance of the algorithm.

Due to the good performance of Algorithm 2. we can
actually do the regularity computation for all possible
semigroups B in NY such that the generators have co-

ordinate sum o for some a and d. This confirmms the
Eisenbud-Goto conjecture for some cases.

Proposition 4.3. Lot B be a homogeneous sergroup. The
regularity of Q [B] is bounded by deg Q [B} — codim Q [B].
provided that the minimal generators of B in N7 have
fired coordinate sum o for d =3 and o« < 5. for d =4
and o < 3. as well as for d =5 and o = 2.

Proof. The list of all minimal generating sets Hilb(53)
together with reg Q [B], deg Q [B]. and codim § [B] can
be found under the link given in [Bohm et al. 12]. ]

Figure 1 depicts the values of deg @ [B] — codim Q [B]
plotted against reg Q [B] for all semigroups with a =3
and d = 4. For the same setup. Figure 2 shows reg Q [5]
on top of codim Q [B] plotted against deg @ [8]. The line
corresponds to the projection of the plane

reg Q [B] — deg Q [B] 4+ codim Q [B] = 0.

Figures for the be found at

[Bohm et al. 12].

remaining  cases can
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Codimensiou ¢
Coordinate Sum o & 16 24 32 40 48 56 64 T2 RO

3 A8 51

1 26 32 .54

i 31 13 22 19 44 89

6 96 120 . - 34 TR I 36 66 120

TABLE 5. Computation times of Algorithm MA for K = Z /101, d = 4, and n = 1 example.
| Codimension ¢
24 2
234 .o . w0
224 D ) example.
214 L R .
20 D)
194 LI R )
18‘ L I
171 L ) .
161 R .
151 L ) .
141 L
131 I )
deg - COdim 121 R )
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FIGURE 1. deg @ [B| — codim [ B] against reg Q [B] for

a=3and d= 4.
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FIGURE 2. reg Q [B] + codim G [B] against deg Q |B] for

a=23and d= 1.
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